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-0.037176 0.172559 -0.984297~ 

F = 0.846866 0.528338 0.060639]. 
/ 

0.530506 -0.831313 0.165776] 

A maximum-likelihood estimate of the mean orienta- 
tion M in the matrix Fisher distribution is then 1~I = 
AF, which expressed in Euler angles is (~0~,~b,~o2)= 
(171.598°,2.169°,101.824°). This mean orientation is 
of course different from the result that would have 
been obtained by simply taking the arithmetic mean 
of the Euler angles. Such a simple approach to 
orientation averaging is not recommended. By the 
approach of Wood (1993) and with an approxi- 
mation described by Mardia & Zemroch (1977), the 
concentration parameter is found as D ~ =  
diag(5.311 x 104,3.156x 104,2.615 x 104). The large 
values for ~b, indicate, as expected, a large clustering 
of the X's. 

Consider the problem of testing whether the X's 
can be assumed to be uniformly distributed on 
SO(3). In this case, the answer is clearly no but a 
formal test for the hypothesis of uniformity can be 
obtained using the statistic R defined by (18). For the 
data of Table 2, R = 3 x 1 0 x 2 . 9 9 9 5 3 = 8 9 . 9 8 6 ,  
which should be compared to ,t'~. The hypothesis is 
clearly rejected. 

The authors express their appreciation to the 
referees for their careful reading of the manuscript 
and helpful suggestions. 
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Abstract 

This paper describes a new trial-and-error direct- 
methods procedure called STEP. A set of strong 
reflections, sufficient to solve the structure, is divided 
into a hierarchy of smaller soluble and connected 
subsystems. Within each subsystem, the reflections 
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are required to be well connected with each other, 
given that the phases of all reflections in the previous 
subsystems are known. A trial-and-error procedure is 
then employed to provide an approximate solution 
to an overdetermined set of equations. Subsequently, 
phases are refined by one of two available tangent 
formulae and then assessed for plausibility by figures 
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of merit. A new overall figure of merit, XDFOM, 
has been found to be very effective in picking up a 
correct solution and the procedure is stopped when 
XDFOM exceeds 4.0. STEP is incorporated in a 
package called SYSTEM90, which has been tested 
with four difficult known structures and one difficult 
unknown structure. In all cases, a correct phase set 
was found. SYSTEM90 is indicated as a powerful 
technique for the solution of difficult and large struc- 
tures. 

Introduction 

The tangent formula, first derived by Karle & 
Hauptman (1956), has become the basis of many 
direct-methods computer packages, for example, 
MULTAN,  SHELX, SIMPEL, MITHRIL and 
SAPL which routinely solve the majority of small to 
medium-size structures and can even be effective for 
small proteins. Nevertheless, some smaller structures 
can still be difficult to determine and we describe 
here another direct-methods approach, the systema- 
tic trial-and-error procedure (STEP), which has been 
successful where other methods have failed. 

Setting up systems of reflections 

A number of strong reflections are chosen, sufficient 
to solve the structure if their phases are known. 
These are then subjected to the CONVERGENCE 
procedure in MULTAN,  which enables them to be 
ordered in such a way that, from a set of known 
phases - those defining the origin and enantiomorph 
and 21 phases, for example - new phases can be 
determined by means of the tangent formula. How- 
ever, for STEP, the CONVERGENCE procedure is 
modified so that a reflection is only accepted in the 
CONVERGENCE mapping if for that reflection 
(a(h)) -> ap, where 

((a(h))) 2 = K(h,k){Ii[K(h,k)]/Io[K(h,k 

+ Z K(h,k ) 2( 1 - {/1 [ x(h,k) ]2 / I0[ x(h,k) ]2}) 
k 

(1) 
and K(h,k) has its usual meaning. This more restric- 
tive CONVERGENCE procedure does not enable a 
starting set to be found. 

When the modified CONVERGENCE has been 
run, the reflections are divided into a number of 
separate but connected systems as follows. The first 
system contains a 'number of unknown reflections' 
(NUR1), which should be > 70; it must also include 
reflections that define the origin. However, with the 
observance of the lower bound of 70, NUR1 is kept 

Table 1. The system of  weights used in (3)for the case 
when reflections can have general phases or be 

restricted to the pairs (0 °, 180 °) and (90 °, 270 °) 

Ref lec t ion  type  S(h) C(h) 

General 1 1 
Special (0 °, 180 °) 0 1 
Special (90 °, 270 °) 1 0 

as low as possible consistent with the following 
conditions: 

(i) the number of 22 relationships generated 
within the system for any reflection must be _> 3; 

(ii) these "~2 relationships should give (a(h))_> ap 
for all reflections. 

For the second system, the reflections of the first 
system are regarded as known and the minimum 
'number of unknown reflections', NUR2, is 
_>(NUR1)/3. Again, with that constraint, the size of 
the second system is kept as small as possible consist- 
ent with the conditions (i) and (ii) given above. 
Further systems are constructed until all the large 
reflections are included. The minimum-size con- 
straints of subsequent systems are governed by 

NUR3 _ (NUR2)/2 

and 

NURn _> 2 x (NUR3)/3 for n -> 4. 

This division of the total set of large reflections into 
well conditioned systems is designed to give better 
phase estimates and to speed up the computational 
process. 

The phase-estimating equations 

The basic equation that is used to estimate phases is 
of the form 

5".B(h)la(h)e-(a(h))[/5".B(h)(a(h)) = 0, (2) 
h h 

where 

a(h)e = S(h) K(h,k)sin[~o(k)+~o(h-k)] 

+ C(h) 

(3) 
B(h)= Ii((a~)))/Io((a(h))) is an effective weighting 
factor in (2) and S(h) and C(h) are weights for the 
real and imaginary parts of (2) for different reflec- 
tions, as indicated in Table 1. The number of terms 
on the left-hand side of (2) equals the number of 
unknown phases but the number of individual X2 
relationships is much greater so what we have is a 
somewhat overdetermined set of equations. 



750 STEP P R O C E D U R E  FOR CRYSTAL S T R U C T U R E  D E T E R M I N A T I O N  

Solving for the phases 
Equations (2) cannot be solved explicitly for the 
phases but must be solved by a combination of the 
trial-and-error and least-squares methods. In the first 
stage, we give random characteristic values to the 
phases, where a characteristic value is one of 45, 135, 
225 or 315 ° for a general reflection and 0 or 180 ° for 
a special reflection, which can only have one of these 
two values. Depending on the space group, other 
pairs of characteristic values can occur. 

On the basis of these characteristic values, the next 
stage is to calculate all values of a(h)e and hence the 
left-hand side of (2). Every go(h) is then judged 
against the criterion that, if 

A = Zx(h,k) sin [go(k) + go(h-k)] 
k 

and 

B = Z x(h,k) cos [go(k) + go(h- k)], k 
then for a good set of phases it would be expected 
that 

A sin go(h) -> 0 and B cos go(h) >_ 0. (4) 

satisfied: 
Ago(h) > 45 ° 

Ago(h) > 30 ° and (a(h)) _> 5.0 

Ago(h) > 15 ° and (a(h)) _> 10.0. 

The changed value of Ago(h) is then accepted if it 
leads to a lower value of the left-hand side of (2); 
otherwise, it is restored to its original value. The 
rationale here is that some deviation from the 
tangent-formula indicated value is acceptable but the 
accepted amount of deviation will depend on the 
standard deviation of the estimate and will not be 
allowed to be greater than 45 ° in any case. This 
process is repeated in cyclic fashion until there is no 
further reduction of the left-hand side of (2), at 
which stage the phases are deemed to be the required 
solution of the overdetermined system (2). 

Once the phases are determined for the first 
system, "then they become known phases for the 
second system and the process described above can 
be repeated for the phases of unknown reflections in 
the second system. In this way, when all the subsys- 
tems have been dealt with in a similar way, there is 
available a set of trial phases that substantially 
satisfy (2). 

The conditions (4) are based on the signs of sin go(h) 
and cos go(h) being the same as those of the tangent- 
formula numerator and divisor, respectively. 

The reflection is found that does not satisfy these 
conditions and has the maximum value of ¢e(h)e and 
its phase is changed to the characteristic value that 
satisfies the inequalities (4). If this new estimate of 
go(h) reduces the value of the left-hand side of (2), 
then it is accepted. 

This process is repeated until no further changes of 
phase are indicated. If all the NUR1 phases conform 
to condition (4), then the phases are accepted as the 
first stage of the solution. On the other hand, if the 
solution does not completely satisfy condition (4) for 
all phases, then a new initial set of characteristic 
phases is generated and the process is repeated. If 
after NUR1 such trials no solution completely satis- 
fying (4) is found, then, of the N U R  sets of phases 
that have been generated, that set of phases is 
accepted that gives the least value of the left-hand 
side of (2). This terminates the first stage of the 
trial-and-error process. 

The accepted set of phases for the first system is 
now subjected to further refinement. The unknown 
phases are examined in sequence and the value of 
Ago(h) is found: 

Ago(h) - - Igo(h)-C I [0 ~ Ago(h) ~< 180°], 

where C = arctan (A/B). The value of go(h) is changed 
to C if one of the following three conditions is 

Refining the complete phase set 
From with the initial estimates of phases, a tangent 
formula is used for refinement. We have found two 
forms of the tangent formula to be effective. The first 
is the Sayre-equation tangent formula described by 
Debaerdemaeker, Tate & Woolfson (1988) and the 
second is a variant of the statistically weighted 
tangent formula given by Hull & Irwin (1978). The 
weighting scheme we use is 

(a(h)) a(h) 
W ( h ) = m i n  C..+-~,l.O,C..+(a(h))], (5) 

where 

a(h) = ( { ~ W(k)W(h- k)x(h,k) 

x sin[go(k)+ go(h- k)]} 2 

+ { ~k W(k) W(h - k) x(h,k) 

2)1/2 
x cos[go(k)+ go(h-k)] . 

The constant 

(6) 

Cw gives control over the phase 
refinement and we have found values of between 0.2 
and 0.3 to be best for giving steady refinement. In the 
STEP program, the default value is 0.25. The two 
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refinement modes in STEP are called STEP(S), 
which uses the Sayre-equation tangent formula, and 
STEP(W), which uses the weighting scheme 
described by (5) and (6). In our experience, 
STEP(IV) with the weighting scheme we use is better 
than that in MULTAN and this is the better one to 
use for large structures. The program selects the 
refinement procedure automatically but the user may 
change this choice by an appropriate keyword. 

The figure of merit XDFOM 

The process that has been described above is carried 
out from many initial trial phase sets, as happens 
with other multisolution methods, which then have 
to be ranked in order of plausibility by the use of 
figures of merit. In MULTAN, there are three 
separate figures of merit, ABSFOM, PSI0 and 
RESID, which are combined to give a combined 
figure of merit CFOM. For small to medium-size 
structures, CFOM can usually distinguish the correct 
solution but we have found that another combina- 
tion of three individual figures of merit is even more 
reliable. This is 

X D F O M  = (1 +c)[ABSFOM/(Rh×PSIO)], (7) 

where Rh is similar to RESID and is given by 

Rh = Y~la(h)-(a(h))l/Y~(a(h)). (8) 
h h 

The constant c = 1.25 if there are heavy atoms in the 
structure and zero otherwise. Generally, it is found 
that a good structure will be found for X D F O M  
greater than 4.0 and when this value is found it is 
assumed that the solution has been found and the 
phase-determining process is stopped. MULTAN 
also has an automatic stopping procedure based on 
the values of RESID and PSI0 but X D F O M  is found 
to be more reliable. 

The SYSTEM90 package 

The STEP process is incorporated in the package 
SYSTEM90, which also includes variants of the 
MUL TAN components NOFI 88, INK88 and 
MAPS88, modified to be compatible with the needs 
of STEP. The enhanced INK program controls 
STEP by means of six keywords. The whole 
programme is as automatic as MULTAN and 
MUL TAN derivatives. 

Applications of SYSTEM90 

We have used SYSTEM90 to solve four known 
structures, so that its performance can be compared 
with alternative methods, and one unknown struc- 

Table 2. Figures of merit for all generated sets of 
phases for PTS6 

Set 23, wi th  X D F O M  _> 4.0, shows  the s t ruc tu re .  

Set A B S F O M  PSI0  R~ X D F O M  

1 0.690 1.997 0.368 0.940 
2 0.605 2.253 0.419 0.641 
3 0.651 2.269 0.432 0.664 
4 - 0.355 1.146 0.892 - 0.347 
5 0.642 2.157 0.417 0.714 
6 0.787 2.244 0.392 0.894 
7 -0 .176  2.111 0.790 -0 .106  
8 - 0.090 2.080 0.741 - 0.059 
9 -0 .016  2.215 0.693 -0 .010  

10 - 0.195 1.558 0.802 - 0.156 
11 0.881 1.145 0.298 2.587 
12 0.755 2.390 0.399 0.793 
13 - 0.279 1.239 0.858 - 0.263 
14 0.646 2.259 0.421 0.679 
15 - 0.328 1.041 0.886 - 0.356 
16 0.914 1.111 0.289 2.842 
17 0.394 2.220 0.468 0.379 
18 - 0.394 1.007 0.908 - 0.431 
19 0.614 2.006 0.399 0.768 
20 - 0.455 0.961 0.927 - 0.511 
21 - 0.334 1.093 0.883 - 0.346 
22 - 0.322 1.197 0.872 - 0.308 
23 1.272 0.963 0.272 4.862 

Table 3. Figures of merit for all generated sets of 
phases for TIN 

Set 28, wi th  X D F O M  ___ 4.0, shows  the s t ruc ture .  

Set A B S F O M  PSI0  Rh X D F O M  

1 0.021 1.148 0.791 0.053 
2 0.078 1.069 0.745 0.221 
3 0.033 1.022 0.781 0.094 
4 0.097 1.209 0.730 0.248 
5 0.009 1.051 0.801 0.023 
6 0.004 0.999 0.805 0.011 
7 0.056 0.983 0.763 0.169 
8 0.066 1.161 0.755 0.170 
9 0.087 1.262 0.738 0.211 

10 0.049 1.117 0.768 0.129 
11 0.078 1.106 0.746 0.212 
12 0.055 0.963 0.764 0.168 
13 0.030 1.088 0.784 0.078 
14 0.009 1.041 0.801 0.026 
15 0.012 1.055 0.798 0.032 
16 0.021 0.991 0.791 0.060 
17 0.040 1.015 0.776 0.113 
18 0.017 1.002 0.795 0.047 
19 0.031 1.233 0.783 0.072 
20 0.018 0.959 0.793 0.054 
21 0.055 1.032 0.763 0.158 
22 0.045 1.144 0.772 0.114 
23 0.039 1.120 0.776 0.101 
24 0.091 1.127 0.735 0.249 
25 0.024 1.022 0.789 0.067 
26 0.019 1.036 0.793 0.051 
27 0.032 1.121 0.783 0.081 
28 0.886 1.840 0.244 4.438 

ture. We now describe the results and comment upon 
them. 

(i) CORT, CzlH28Os, P212121, Z = 4 

This is the example structure of the MULTAN 
method and was determined by a default run of 
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Table 4. The figures of  merit for the correct solutions for all five structures 

The second column gives the number of  the correct set and the default number of  sets derived by SYSTEM90, which is 1.5 times the 
number of  independent non-H atoms. The final column gives the number of  atoms found in the E map compared with the number of  
non-H atoms in the asymmetric unit. 

Solution set/ Figures of  merit Atoms found/ 

Structure default sets ABSFOM PSI0 Rh X D F O M  total number 

CORT 10/39 0.965 1.006 0.119 4.828 26/26 
BHAT 16/63 0.873 1.102 0.171 4.628 40/42 
PTS6 23/111 1.272 0.963 0.272 4.862 74/74 
AFCMT 1/66 1.350 2.322 0.303 4.319 40/44 
TIN 28/138 0.886 1.840 0.244 4.438 87/92 

SYSTEM90.  Set 10 satisfied the XDFOM criterion 
so the procedure then stopped. The E map showed 
all 26 non-H atoms. 

(ii) BHAT, CloH8F4NIoOI8, Pc, Z = 2 

This is a difficult structure that was reported by 
Bhat (1990) to have resisted solution by MULTAN80 
and MITHRIL83.  It could, however, be solved by 
SHELXS85. A default run of SYSTEM90 gave an 
acceptable value of XDFOM for set 16 and the E 
map gave 40 of the 42 non-H atoms. 

(iii) PTS6, C 2 7 H 3 1 N O 9 ,  P21/c, Z = 8 

This structure has pseudosymmetry and presents 
problems for that reason. It was originally solved by 
the program system SAPI  (Fan, Yao & Qian, 1990), 
which has special provision for dealing with this kind 
of problem. In a default-mode run of SYSTEM90,  
set 23 gave a satisfactory value of XDFOM and the 
resultant E map showed all the non-H atoms. The 
individual figures of merit and of XDFOM are 
shown in Table 2. 

(iv) AFCMT, (CloH12S8)2C16Cu2, P1, Z = 1 

This material is an organic conductor that was 
solved by SHELXS86 after attempts to solve it with 
MULTANSO and SHELXS76 had failed. Set 1 of a 
default run of SYSTEM90 gave a satisfactory solu- 
tion according to the value of XDFOM and 41 of the 
44 non-H atoms were found in the E map. 

(v) TIN, C36H33C1307 ,  Cc ,  Z = 8 

This is a new calixarene whose structure was pre- 
viously unknown. Very little of the material was 
available so an analysis had not been done and its 
composition was assumed to be C34H33CIO5 . It was 
determined by a default run of SYSTEM90 and gave 
a satisfactory solution according to XDFOM for set 
28. Table 3 shows the complete list of figures of merit 
leading up to the complete solution. In the E map, 
the two molecular fragments containing two 28-atom 
rings in the asymmetric unit were clearly seen. Each 

large ring was composed of four phenyl rings and 
four methylenes. 

The E map gave 87 non-H atoms out of the 92 
that are present. One cycle of Fourier refinement led 
to the complete structure. Interpretation of the map 
reveals that each TIN molecule contains 46 non-H 
atoms and there are three chloroacetyls, two 
methoxys and two hydroxys in each molecule ring. 
The structure is different from that assumed so in 
this case SYSTEM90 has not only solved the struc- 
ture but also determined the composition. 

A summary of the characteristics of the correct 
solutions for each of the five structures is given in 
Table 4. 

Concluding remarks 

SYSTEM90 has three distinctive features that are 
also features of some other direct-methods packages. 

(1) It automatically decides on the number of 
strong reflections required to define the structure 
according to chemical considerations. If the structure 
contains heavy atoms, the program will increase the 
number of strong reflections on the basis of the 
element's position in the Periodic Table. In this way, 
SYSTEM90 deals equally well with equal-atom and 
heavy-atom structures. 

(2) Solving for phases by stages gives phase esti- 
mates that have smaller errors than those derived by 
expansion from a small starting set. It also gives a 
system that is easier to solve than one that begins 
with a very large starting set. This approach seems to 
give SYSTEM90 the ability to solve very difficult 
and large structures. 

(3) An important feature is the ability of XDFOM 
to recognise the correct solution. Since the program 
then ceases automatically, it leads to very economical 
structure solution in terms of computer time while at 
the same time giving good-quality solutions. 

It is well known by the users of direct-methods 
packages that no single package on its own will 
solve all structures. For one particular structure, 
M U L T A N  may succeed where S H E L X  fails; for 
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another structure, the situation may be reversed. It is 
therefore useful to have available a variety of 
methods incorporating as many different approaches 
as possible. The SYSTEM90 approach is quite dis- 
tinctive and we have shown that it stands compari- 
son with other existing methods in its effectiveness. 

Anyone wishing to obtain SYSTEM90, together 
with full information on its use, can do so by 
applying to HY. 
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was tested by Professor Fan Hai-fu and Professor 
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advisor Professor Tang You-qi and to Professor Fu 
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Abstract 

Estimates for the density of periodic three- 
dimensional nets in Euclidean three-dimensional 
space (~3) are derived. The analysis assumes that the 
nets tile triply periodic hyperbolic surfaces that are 
free of self-intersections (embedded in ~3). Upper 
and lower bounds of the net density as a function of 
the average ring size on the surfaces are given. These 
geometrical relations are compared with framework 
densities of a range of silicon-rich zeolites, silica 
clathrasils and dense four-connected silicates in order 
to separate the roles of geometry and chemistry in 
setting silicate densities. The data suggest that silica 
frameworks are constrained by an approximate 
requirement of constant area per framework vertex 
in addition to the impositions of Euclidean three- 
space and are thus hyperbolic two-dimensional 
(layer) structures. 

Introduction 

Although nets have intrinsic mathematical interest 
(as 'graphs'), their geometrical characteristics are of 
relevance also to the solid state. In particular, the 
bonding topology of covalent frameworks - such as 

© 1994 International Union of Crystallography 
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silicates - can be represented by a three-dimensional 
network. This has led to a number of theoretical 
studies of three-dimensional nets and their possible 
realizations as chemical frameworks (Wells, 1977; 
Smith, 1988; O'Keeffe, 1991). Despite the universal 
use of nets to describe structures in the solid state 
(any chemistry text is replete with examples), little 
fundamental work has been done. O'Keeffe has con- 
jectured a number of challenging results and conjec- 
tures about three-dimensional nets, which suggest 
that the variety of three-dimensional nets realizable 
in Euclidean three-dimensional space is more limited 
than intuition would suggest. As yet, no procedure 
has been found for a systematic enumeration of 
three-dimensional networks (hereafter referred to as 
'nets'), so it is difficult to establish their general 
characteristics. 

Some intriguing relations between the bulk density 
of periodic nets and their topology have been 
reported. The relation between silicate densities and 
ring sizes has been reported and analysed to a limited 
extent by Stixrude & Bukowinski (1990). Nets of low 
density (number of vertices per unit volume), called 
'rare' nets, are of interest as possible structure for 
zeolites. In this context, approximate relations 
between the net density and the size of the smallest 
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